导读:ECAI 2016是欧洲展示AI科学成果的最佳场所,大会为研究人员提供了很好的机会,去介绍和听取当代最优秀的人工智能研究成果。通过多重由浅入微的深度度量进行行人再识别(Person Re-Identification via Multiple Coarse-to-Fine Deep Metrics)摘要:行人再识别的目标是从不同地方的多个相机视角识别同一个人的图像,这在人工智能和多媒体领域引发了浓厚的研究兴趣。度量学习方法作为它的流行研究方向这一,在寻求适当的度量空间生成精确的特征比较方面起着重要作用。然而,现有的度量学习方法主要是通过单一的度量学习最佳的距离度量函数,这使它们难以考虑样本之间的多重相似关系。为了解决该问题,本文提出了一种由浅入深(coarse-to-fine)的深度量学习方法,它配备多个不同的堆叠自动编码器(SAE)网络和分类网络。在人的视觉机制视角下,多个不同层次的深神经网络模拟大脑视觉系统处理信息,它采用不同的模式来识别对象的字符。此外,我们还提出了一种加权分配机制,以处理不同测量方式的最终识别精度。在两个公共数据集(VIPeR和CUHK)上进行实验的结果显示了所提出方法的预期性能。第一作者简介Mingfu Xiong任职:武汉大学文章总结及应用场景本次研究中,我们提出了一种利用多重由浅入微的自动编码模型方法,处理不同环境变化中行人再识别问题。我们的算法中训练了几个不同的SAE网络,每一个网络后面都有一个softmax分类器,因此我们可以建立有不同隐藏层的神经网络模拟大脑的视觉皮层。预处理后的行人图像对通过减去用于网络输入的平均值,产生一对分类结果。最后,进一步使用加权分配机制,以提高所获得分类结果的识别精度。在两个公众数据集上大量实验的结果显示了我们算法的优越性。我们建立的多重由浅入微的深度度量学习方法可以扩展到其它视觉应用,例如图像分类,对象检测等。via:ECAI 2016PS : 本文由雷锋网独家编译,未经许可拒绝转载!原论文下载
本文转自雷锋网,如需转载请至雷锋网官网申请授权。
版权声明:
创新中心创新赋能平台中,除来源为“创新中心”的文章外,其余转载文章均来自所标注的来源方,版权归原作者或来源方所有,且已获得相关授权,若作者版权声明的或文章从其它站转载而附带有原所有站的版权声明者,其版权归属以附带声明为准。其他任何单位或个人转载本网站发表及转载的文章,均需经原作者同意。如果您发现本平台中有涉嫌侵权的内容,可填写
「投诉表单」进行举报,一经查实,本平台将立刻删除涉嫌侵权内容。